
Tightly-coupled Convolutional Neural Network with Spatial-temporal Memory for
Text Classification

Shiyao Wang† and Zhidong Deng⇤
†State Key Laboratory of Intelligent Technology and Systems

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science, Tsinghua University, Beijing 100084, China

Email: sy-wang14@mails.tsinghua.edu.cn
⇤ Email: michael@tsinghua.edu.cn

Abstract—Although several traditional models like bag of
words (BOW), n-grams, and their variants of TFIDF, have
exhibited high performance in the field of text classifica-
tion, neural network methods such as LSTM, GRU, and
convolutional neural network (CNN) are recently attracting
increasing attention. Considering that CNN has surprising
capabilities of extracting hierarchical features, combination
of LSTM/GRU with CNN seems to be quite reasonable for
semantic representation and sequence analysis. On the other
hand, it is also a promising subject to enable CNN to have
memory embeddings and/or recurrent pathway. In this pa-
per, we propose a novel tightly-coupled convolutional neural
network with spatial-temporal memory (TCNN-SM). It com-
prises feature-representation and memory functional columns.
Feature-representation functional column in our TCNN-SM
actually performs hierarchical feature extraction as regular
CNN does while memory functional column retains memo-
ries of different granularity and fulfills selective memory for
historical information. In order to validate effectiveness and
efficiency of the proposed TCNN-SM, we conduct extensive
experiments on AG’s News public dataset. The experimental
results show that our new TCNN-SM achieves 7.99% test error,
which has the best performance among other existing deep
learning methods and is very close to state of the art results
yielded using classical n-grams algorithm.

1. Introduction

Text classification in natural language processing (NLP)
has been applied to a wide range of fields such as web
search, document categorization, and information retrieval.
It is expected to analyze text, extract key information and
eventually assign it to pre-defined categories (e.g., sports,
world). Building good representations for text classification
seems to be vital to gain better performance. Most models
begin with distributed representations of words or characters
in a vector space. One of the earliest use of word represen-
tations dates back to 1986 due to Hinton et al., and then
applied to statistical language modeling with considerable
success. Many follow up works have extended the previous
method both in representation quality and efficiency. [1] and

[2] are the most popular models for word representations,
and both of them released pre-trained vectors that can be
subsequently used for further research.

After obtaining word representations, each document can
be expressed in the form of word embedding vectors. The
traditional text modeling uses human-designed features of
text and feeds them to a classifier, such as SVMs. Some of
linear models [3], [4]have shown impressive performance
especially the training datasets are relatively small.

Recently, the models based on deep learning approaches,
such as recurrent neural networks (RNNs) [5] and convolu-
tional neural networks (CNNs) [6] have attracted increscent
interest for text classification. The main-stream approach is
to consider a text as a sequence of tokens and process them
with RNN, especially a popular and successful RNN variant
- Long Short-Term Memory neural network (LSTM) [7].
The most significant advantages of RNNs are the abilities
to handle sequences of any length and capture long-term
dependencies. On the other hand, many studies have found
CNNs have surprising capabilities of extracting hierarchical
features ranging from computer vision to speech recognition.
Hierarchy is an effective and common way of representation
information and other real-world textual data can be orga-
nized in this way. CNNs possess such natural hierarchical
architecture and massive prior work has further improve its
abilities [8]. It is regrettable that CNNs require fixed-length
input and seem unable to remember contextual information
like RNN. It must be a promising subject to enable CNN to
have memory embeddings so as to learn both hierarchical
and temporal representations.

In this paper, we propose a novel model that can
naturally host both hierarchical and temporal informa-
tion called tightly-coupled convolutional neural network
with spatial-temporal memory (TCNN-SM)(see Figure 1).
It comprises feature-representation and memory functional
columns. Feature-representation functional column contains
four hidden convolutional layers (HCL) and three pooling
layers, which completely functions the same as regular
CNN. In parallel, memory functional column consists of
four convolutional spatial memory layers (CSML) with cy-
cle. CSML retains memories of different granularity and re-
ceives three incoming streams from upper CSML, preceding

Figure 1. A simplified sample of TCNN-SM. Blocks in blue indicate the
CSMLs that receive three incoming streams.

aggregation vector, and cycle itself (called temporal mem-
ory), respectively. In the same layer of TCNN-SM, outputs
of HCL and CSML are concatenated into an aggregation
vector, which is further employed as input of next layer.
Feature-representation functional column in our TCNN-SM
actually performs hierarchical feature extraction as regular
CNN does, while memory functional column is exploited to
fulfill selective memory for historical information through
error back-propagation. Except for the above, we also utilize
L1-norm as regularization in cost function, which is very
beneficial to highlight of key words of text due to sparsity
strengthening. Interestingly, we find out that repeated stim-
ulus of input samples is more useful for a variable-length
of sentences in text classification task compared to all-zero
paddings.

We evaluate our models on AG’s News public dataset.
Experiment results show significant and consistent improve-
ments compared to state-of-the-art deep learning models and
is very close to state of the art results yielded using classical
n-grams algorithm.

2. Related Work

2.1. Traditional NLP Method

Traditional models for text classification generally have
extraction of a rich set of hand-designed features that are
then fed to standard classification algorithm, where the bag
of words (BOW) model is commonly employed in feature
engineering, including unigrams, bigrams, n-grams or some
other patterns. In the feature selection, [9], [10] aim at
selecting more useful and discriminative features. More
complex features can be found in [11], [12]. Classifica-
tion algorithms often include logistic regression (LR), naive

Bayes (NB), and support vector machine (SVM). However,
the use of handcrafted input features that are required to
be carefully optimized for each task seems inefficiency and
these traditional models may get involved in data sparsity
problem.

2.2. The Deep Learning Models

Recently, deep neural networks (Hinton and Salakhut-
dinov 2006) have achieved great success in many NLP
tasks, including distributed representation learning [2], [13],
machine translation [14], [15], and text classification [16].
Among them, recurrent neural network (RNN) and convo-
lutional neural network (CNN) are believed to have remark-
able performance.

RNN is a neural network model that is capable of
dealing with variable-length input sequences and learning
long and short-term dependencies. LSTM [7] is undoubtedly
one of the most successful and popular RNNs, aiming to
facilitate training of RNNs through solving diminishing and
exploding gradient problems in deep or long structures [17].
There are a lot of literatures that exhibit LSTM ability to
model long-range dependencies in NLP applications [18],
[19], [20], [21]. But LSTM is a regular structure and same
cell is exploited in all applications, which may be not effi-
ciently applicable to particular task. Morever, the unrolling
of sequence over time leads to the fact that recent tokens
could be better memorized than older ones [22].

On the other hand, CNNs have task-specific structures,
which are optimized through not only network structure
improvements but also several valuable strategies such as
Batch Normalization, PReLU, and Maxout [23], [24] and
task-specific algorithms [25]. In text classification, some
of previous works have achieved considerable results. In
[26], Collobert et al. use convolutional kernels to successive
windows for a sequence. Kim et al. [27] utilizes multiple
filters with varying window sizes to extract multiple features.
The max-over-time pooling is also employed to handle
variable-length problems. In addition, Kalchbrenner et al.
propose a dynamic k-max pooling mechanism in [28].that
has capabilities of capturing local correlation along with
extraction of high-level features. All the above approaches
are based on word-level representation. [16] and [22] present
modeling of text from character-level representation and
achieve excellent results. In particular, [22] adopts very deep
convolutional neural network like ResNet [8]. In this paper,
we will take it as our strong baseline.

Considering that CNN has surprising capabilities of
extracting hierarchical features, combination of RNN with
CNN seems to be quite reasonable for semantic represen-
tation and sequence analysis. [29] utilizes CNN to have
extraction of a sequence of high-level phrase representation
and fed it into LSTM, in order to acquire representation
for sequence or temporal data. [30] propose a novel multi-
scale RNN model, which can learn hierarchical multi-scale
structure from temporal data without explicit boundary in-
formation. To the best of our knowledge, there is no existing

Figure 2. The proposed network for text classification. The white blocks lined up indicates the HCLs, the dark blue blocks are the CSMLs and the light
blue blocks are the representation aggregation vector consist of a pair of HCL and CSML.

methods that enable regular convolutional neural network to
have tightly-coupled layers with spatial-temporal memory.

3. Tightly-coupled Convolutional Neural Net-
work with Spatial-temporal Memory

In this section, the framework of our tightly-coupled
convolutional neural network with spatial-temporal memory
(TCNN-SM) for text classification is at first described.
Second, we focus on hidden convolutional layer (HCL)
and convolutional spatial memory layer (CSML) in TCNN-
SM. Finally, we introduce policies of repeated stimulus
of input samples and L1-norm regularization in training
process so as to further improve classification performance
of the proposed TCNN-SM.

3.1. Framework of TCNN-SM for Text Classifica-
tion

In this paper, we propose a novel TCNN-SM model for
text classification. As illustrated in Figure 2, our TCNN-
SM model takes embeddings of words in text as inputs,
which are yielded through pre-trained representation vectors
based on unsupervised method proposed in [1]). Inspired
by parallel CNN layers in [31], our TCNN-SM model com-
prises four convolutional pipelines that have the identical
architecture and the same parameter settings in parallel,
and are eventually concatenated and fed them into fully-
connected layer. This is originated from an idea to learn
different local regions to enhance final accuracy. We find
out that the way of parallel convolutional pipelines is usually
more effective than that of simply increasing the number of
filters.

Within each pipeline, our core module is composed of
two functional columns: feature-representation (colored with
white feature maps in Figure 2) and memory functional

columns (with blue feature maps in Figure 2). The light blue
maps indicate intermediate output of one layer. The feature-
representation functional column contains four HCLs that
functions the same as regular CNN, while the memory func-
tional column consists of four CSMLs with cycle in parallel.
A pair of HCL and CSML is regarded as a basic layer in
our TCNN-SM network. The outputs of HCL and CSML
are concatenated into an representation aggregation vector
or intermediate output, which is further employed as input
of next layer. Note that a pooling layer is located between
every two basic layers in order to jointly accomplish robust
and hierarchical representations.

Within each basic layer, CSML retains memories of dif-
ferent granularity and receives three incoming streams from
upper CSML, preceding representation aggregation vector,
and cycle itself (called temporal memory), respectively.
These three incoming streams come with different goals.
One stream from upper CSML aims to retains memories
of different spatial granularity. Features in bottom layers
always hold more detailed information along with some
noises, whereas top layers has more robust features but
loss some details. The combination of these different spatial
granularity can be complementary to each other. Another
stream comes from the preceding representation aggregation
vector indicates the current input of this layer. The third
stream contains the information from itself at the previous
time step. Actually, when a document is assigned to the
pre-defined categories, it is unnecessary for a model to
remember all the sequential information in the content. A
more sensible model is to extract key words or information
in a local part of text, e.g. a few sentences. And then gather
all the crucial information over time. Hence, it motivates us
to divide each document into several parts, and each part
is fed to the network in order. First, they will get though
the HCLs, and it is expected to extract crucial information
because CNN has surprising capabilities of extracting local
information layer by layer and finally form a hierarchical

representation. In the mean while, they are passing through
the CSMLs which retain the historical information from both
the bottom layer and previous parts. And these CSMLs are
intended to learn a combination of historical information
and current information. Finally, the output of CSMLs and
HCLs will be concatenated into a representation aggregation
vector for the next layer.

3.2. Basic Layer: HCL and CSML

Let us make description of basic layer in our TCNN-
SM model, which is composed of both HCL and CSML.
A local part of Figure 2 can be shown as Figure 3(a). The
left column represents the HCLs and the right column are
CSMLs. We use h

l
t and m

l
t to denote a HCL and a CSML at

the time step t of layer l, respectively. The data are passed
from the bottom to the top.

Consider the TCNN-SM model of L layers (l = 1,...,L),
it performs the following update at time step t and at each
layer l:

h

l
t,m

l
t = f

l
TCNN�SM (hl�1

t ,m

l�1
t ,m

l
t�1). (1)

The function f

l
TCNN�SM is implemented as follows. First,

we will update the memory functional column m

l
t. It re-

ceives three incoming streams: preceding representation ag-
gregation vector, upper CSML and cycle itself, which are
corresponded to Zhl�1

t
, Zml�1

t
andZml

t�1
respectively. And

they will be concatenated into a memory aggregation vector
m

l
t:

Zhl�1
t

= sigm(W sigm
zhl�1h

l�1
t)� tanh(W tanh

zhl�1h
l�1
t)

Zml�1
t

= sigm(W sigm
zml�1m

l�1
t)� tanh(W tanh

zml�1m
l�1
t)

Zml
t�1

= sigm(W sigm
zml m

l
t)� tanh(W tanh

zml m

l
t)

m

l
t = [Zhl�1

t
, Zml�1

t
, Zml

t�1
] (2)

Here, we use W

i
j to denote learnable filters and the term of

bias is left out in all formulea. � denotes the element-wise
multiplication. [Zhl�1

t
, Zml�1

t
, Zml

t�1
] indicates the concate-

nation of Zhl�1
t

, Zml�1
t

and Zml
t�1

. sigm is the logistic
sigmoid function that has an output in [0, 1], while tanh

denotes the hyperbolic tangent function that has an output in
[�1, 1]. Above three incoming streams form into a memory
aggregation vector . And then the batch normalization and
ReLU activation will be adopted like the regular CNN.

m

l
t = ReLU(BN(ml

t)) (3)

The feature-representation functional column is defined
as

Rhl�1
t

= sigm(W sigm
rhl�1h

l�1
t)� tanh(W tanh

rhl�1h
l�1
t)

Rml
t

= sigm(W sigm
rml m

l
t)� tanh(W tanh

rml m

l
t)

h

l
t = [Rhl�1

t
, Rml

t
] (4)

Figure 3. The detail operation in HCLs and CSMLs. Figure 3(a) is the
simplified structure of Figure 2. The implementation of each straight line
or arched line with an arrow is shown in Figure 3(b). And the node
receives multi-stream information will be concatenated into a representation
aggregation vector or a memory aggregation vector. � denotes the element-
wise multiplication.

Smiliarly, hl
t is followed by a temporal batch norm layer

and activation.

h

l
t = ReLU(BN(hl

t)) (5)

From above formulae, we can find that before each
concatenation, the input information will go though a stan-
dard module, shown as Figure 3(b). The hyperbolic tangent
function tanh aims to normalize the different incoming
information into [�1, 1]. We use sigmoid with the intent of
forgetting some of useless information. Since different local
parts pass through the model over time, each operation of
concatenation is meant to accumulation of information. We
use a sigmoid gate to drop unnecessary information in order
to learn better. We achieve better performance by using this
module.The comparison experiments will be exhibited in the
experiment section.

3.3. Repeated Stimulus and L1-norm regulariza-
tion

Since CNNs require fixed-length input whereas the num-
ber of words vary from each document, we provide a
simple but useful way to handle the variable lengths of
text. In the previous work, [27] use over-time max pooling
scheme to deal with variable sentence lengths. And [29]
pad each sentence that has a length less than maxlen,
with special symbols at the end that indicate the unknown
words. The maxlen is pre-defined empirically. It is similar
to the all-zero padding vectors in [32]. In our paper, we
still pad the text to a fix length. However, differ from this
padding method without the semantic information, we prefer
to pad each text by repeated stimulus. In other words, if

the length of the text less than maxlen, we can repeat
the sentence over again. If a document consists of a few
words, the repeated stimulus may promote our model to
extract useful information. Furthermore, this padding vector
is friendly to the following operation, e.g. bias terms or
batch normalization without any extra gate, which keeps
away the artifacts from padding in all layers. We conduct
a comparison between our repeated stimulus and all-zero
padding, and prove our simple method works better.

For regularization, most existed classification tasks em-
ploy L2 weight regularization [27], [29], [33], but we prefer
to use L1 regularization which is more effective in text
classification. The cost function with L1-norm and L2-norm
weight decay can be denoted as:

J(w) = argmin
w

X

i

L(yi, f(xi;w)) + ||w||1 (6)

J(w) = argmin
w

X

i

L(yi, f(xi;w)) +
�

2
||w||2 (7)

Where J(w) denotes the cost function, w is a set of model
parameters, including weights and biases. The Equ.(6) de-
notes the L1-norm and Equ.(7) denotes the L2-norm. The
L1-norm has an ability of sparsity strengthening. We can
find there many stop words in each document, e.g. “the”,
“a” , which may influence the feature extraction. Due to
the task of text classification, models should pay attention
to key words in order to extract more crucial information
and suppress the expression of irrelevant words. [10] has
indicated that L1 regularization of the parameters matches
the best known bounds for feature selection, and L1 regu-
larized logistic regression can be effective even if there are
exponentially many irrelevant features as there are training
examples. Therefore, we also conduct related experiments
to prove the efficiency of L1-norm.

4. Experimental Results

In this section we evaluate effectiveness and efficiency
of our TCNN-SM model based on experimental results on
AG’s News public dataset [16]. The AG’s corpus of news
article contains 496,835 categorized news articles from more
than 2,000 news sources. Using title and description field, 4
largest classes are labeled,. The number of training and test
samples for each class is 30,000 and 1,900, respectively,
which means that totally the training dataset has 120,000
samples and the test dataset comprises 7,600 ones. The
average word length in AG’s News dataset is 45.

TABLE 1. WORD LENGTH OF THE DATASET AFTER PREPROCESSING.

Minmum Maxmum Average
Length Length Length

Training Set 4 177 37
Test Set 9 136 37

4.1. Experimental Setup

4.1.1. Data. To experiment with our TCNN-SM model, we
adopt the pre-trained word representations by unsupervised
method in [1] and convert the text into word embeddings.
Since the pre-trained representations can not hold all the
words of the dataset, we ignored the words which do not
have corresponding representations. After above preprocess-
ing, the words length of dataset is shown in Table 1. We use
repeated-padding method to convert the input to a fix length
- maxlen. In all the following experiments, we choose
maxlen = 100.

4.1.2. Architecture. There are four CSMLs and four HCLs
in a TCNN-SM shown in Figure 2. All the layers have 32
feature maps. In all experiments, our models are trained
using stochastic gradient descent (SGD) algorithm with a
mini-batch of 256. The learning rate is initialized to 0.01
and repeatedly decreased 2 times, until it arrives at 1e-4.
We run our net through the whole training data about 20
epochs. A momentum of 0.9 is used in the entire training
process to make SGD stable and fast.

As illustrated in method section, each document will
be divided into n local parts. We choose n = 4, which
means that every 25 words will be fed to our model at once
in oder to extract key information among the local parts.
The individual local parts are lined up by the recurrent path
in the CSMLs according to time sequence. CSMLs learn
selective memory of historical information and enrich the
representations with HCLs.

TABLE 2. COMPARISON OF DIFFERENT CONFIGURATIONS.

Configuration Error
(%)

L1-norm, repeated-padding, single pipeline 8.43
L2-norm, repeated-padding, single pipeline 9.66

L1-norm, 0-padding, single pipeline 8.70
L2-norm, 0-padding, single pipeline 9.89

L1-norm, repeated-padding, four-pipeline 7.99
L1-norm, repeated-padding, wide single pipeline 8.77

4.1.3. Comparison of Different Settings. In Table 2,
we show the error rate results of different configurations,
which consist of three kinds of comparisons. L1-norm and
L2-norm denotes the different regularization. 0-padding is
putting all-zero padding vectors. Four-pipeline model is the
combination of four single pipeline network. We concatenate
the output until the penultimate inner product layer. And
wide single pipeline model changes the former 32 feature
maps to 64 feature maps. From the comparisons in Table
2, L1-norm performs better than L2-norm and repeated-
padding is superior than 0-padding. Intuitively, increasing
the number of feature maps will promote the model, how-
ever, it seems to be overfitted to the training set even we
have raised the dropout rate. On the other hand, we use four-
pipeline model, it consistently improve the performance of
single pipeline model. It proves that the way of parallel con-
volutional pipelines is more effective than roughly increase
the number of filters.

TABLE 3. COMPARISON TO PUBLIC MODELS.

Related NN models Error (%) Reported In
LSTM 13.94 [16]

Best w2v-Conv. 9.92 [16]
Best Lk-Conv. 8.55 [16]

Best Char-Conv. 8.67 [22]
TCNN-SM 7.99 Our Model

4.1.4. The Improvement of sigm�tanh Gate. As an
initial version, CSML in TCNN-SM is designed to directly
concatenate different kinds of historical information. It is
expected to further learn suitable combination of incoming
streams. But it causes training process to be unstable and
yields unsatisfactory results, as shown in Table 4. We find
out that this CSML seems to just accumulate the past
information and is lack of forgetting mechanism. It motives
us to add a normalization function tanh and a forgetting
factor sigm for output of convolutional kernel, both of
which are placed before each concatenation. In Figure 3(b),
outputs of tanh and sigm are combined through element-
wise multiplication. Interestingly, it leads to stable training
process, as shown in Table 4.

TABLE 4. ILLUSTRATION OF THE sigm�tanh GATE.

Single Pipeline Four Pipeline
No-Gate 8.99 8.41

Sigm�tanh 8.43 7.99

4.2. Compaison with Baseline Models

After the effectiveness of our new model is validated,
we conduct comparison of TCNN-SM model with baseline
models, as listed in Table 3. We give another four significant
neural networks: one LSTM and three CNNs. The first three
are reported in [16] and the Best Char-Conv. is reported
in [22]. Among the first three CNNs, the major difference
is the form of input. Best w2v-Conv. uses the pre-trained
word2vec embeddings like our model. The input of best Lk-
Conv. is in the form of lookup table in [26]. Best Char-Conv.
uses up to 29 convolutional layers and creates a vectorial
representation of each character.

In Table 3, our model outperforms all the related neural
networks. The Best Char-Conv. uses 29 convolutional layers
while our model holds only four layers. It seems that it
is more difficult for models to learn from character-level,
because internal structure of words by which words are
formed are obscure.

However, the best linear model (ngrams TFIDF) has
achieved a test error rate of 7.64% reported in [16]. Even our
model has outperformed the other neural networks, the linear
model is still superior to ours. A TF-IDF variant contains
more priori knowledge and pay more attention to some
of key words. It is efficiency for category classification,
especially the dataset is relatively small. We can learn from
this traditional model and further improve our model.

5. Conclusion

In this paper, we propose a novel TCNN-SM architec-
ture that is capable of capturing both spatial and temporal
memory of text. It comprises feature-representation and
memory functional columns. Basically, HCLs in feature-
representation functional column carry out hierarchical fea-
ture extraction while CSMLs in memory functional col-
umn accomplish selective memory of different granularity
for historical information. To highlight key words of text
due to sparsity strengthening, we also utilize L1-norm as
regularization in cost function. Furthermore, we find out
that repeated paddings of input samples are well suited
to variable-length of sentences in text classification task.
The experimental results achieved on AG’s News public
dataset demonstrate that our new TCNN-SM achieves 7.99%
test error, which has the best performance among other
competitive baseline models and is very close to state of
the art results yielded using classical n-grams algorithm.

Acknowledgments

The authors would like to be grateful to the anonymous
reviewers for their valuable comments that considerably
contributed to improve this paper.

References

[1] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation.” in EMNLP, vol. 14, 2014, pp. 1532–43.

[2] T. Mikolov and J. Dean, “Distributed representations of words and
phrases and their compositionality,” Advances in neural information
processing systems, 2013.

[3] T. Joachims, “Text categorization with support vector machines:
Learning with many relevant features,” in European conference on
machine learning. Springer, 1998, pp. 137–142.

[4] S. Wang and C. D. Manning, “Baselines and bigrams: Simple, good
sentiment and topic classification,” in Proceedings of the 50th Annual
Meeting of the Association for Computational Linguistics: Short
Papers-Volume 2. Association for Computational Linguistics, 2012,
pp. 90–94.

[5] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14,
no. 2, pp. 179–211, 1990.

[6] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” arXiv preprint arXiv:1512.03385, 2015.

[9] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2012.

[10] A. Y. Ng, “Feature selection, l 1 vs. l 2 regularization, and rotational
invariance,” in Proceedings of the twenty-first international confer-
ence on Machine learning. ACM, 2004, p. 78.

[11] Y. S. Chan and D. Roth, “Exploiting syntactico-semantic structures
for relation extraction,” in Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language
Technologies-Volume 1. Association for Computational Linguistics,
2011, pp. 551–560.

[12] M. Post and S. Bergsma, “Explicit and implicit syntactic features for
text classification.” in ACL (2), 2013, pp. 866–872.

[13] Q. V. Le and T. Mikolov, “Distributed representations of sentences
and documents.” in ICML, vol. 14, 2014, pp. 1188–1196.

[14] H. Schwenk, D. Dchelotte, and J.-L. Gauvain, “Continuous space
language models for statistical machine translation,” in Proceedings of
the COLING/ACL on Main conference poster sessions. Association
for Computational Linguistics, 2006, pp. 723–730.

[15] J. Devlin, R. Zbib, Z. Huang, T. Lamar, R. M. Schwartz, and
J. Makhoul, “Fast and robust neural network joint models for statisti-
cal machine translation.” in ACL (1). Citeseer, 2014, pp. 1370–1380.

[16] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional
networks for text classification,” in Advances in Neural Information
Processing Systems, 2015, pp. 649–657.

[17] S. Hochreiter, “The vanishing gradient problem during learning re-
current neural nets and problem solutions,” International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 6, no. 02,
pp. 107–116, 1998.

[18] M. Sundermeyer, R. Schlüter, and H. Ney, “Lstm neural networks for
language modeling.” in Interspeech, 2012, pp. 194–197.

[19] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in neural information processing
systems, 2014, pp. 3104–3112.

[20] W. Ling, T. Luı́s, L. Marujo, R. F. Astudillo, S. Amir, C. Dyer, A. W.
Black, and I. Trancoso, “Finding function in form: Compositional
character models for open vocabulary word representation,” arXiv
preprint arXiv:1508.02096, 2015.

[21] M. Ballesteros, C. Dyer, and N. A. Smith, “Improved transition-based
parsing by modeling characters instead of words with lstms,” arXiv
preprint arXiv:1508.00657, 2015.

[22] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very deep con-
volutional networks for natural language processing,” arXiv preprint
arXiv:1606.01781, 2016.

[23] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in
Proceedings of the IEEE International Conference on Computer
Vision, 2015, pp. 1026–1034.

[25] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” in Advances in
neural information processing systems, 2015, pp. 91–99.

[26] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu,
and P. Kuksa, “Natural language processing (almost) from scratch,”
Journal of Machine Learning Research, vol. 12, no. Aug, pp. 2493–
2537, 2011.

[27] Y. Kim, “Convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1408.5882, 2014.

[28] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolu-
tional neural network for modelling sentences,” arXiv preprint
arXiv:1404.2188, 2014.

[29] C. Zhou, C. Sun, Z. Liu, and F. Lau, “A c-lstm neural network for
text classification,” arXiv preprint arXiv:1511.08630, 2015.

[30] J. Chung, S. Ahn, and Y. Bengio, “Hierarchical multiscale recurrent
neural networks,” arXiv preprint arXiv:1609.01704, 2016.

[31] R. Johnson and T. Zhang, “Effective use of word order for text
categorization with convolutional neural networks,” arXiv preprint
arXiv:1412.1058, 2014.

[32] B. Hu, Z. Lu, H. Li, and Q. Chen, “Convolutional neural network
architectures for matching natural language sentences,” in Advances
in Neural Information Processing Systems, 2014, pp. 2042–2050.

[33] V. Landeiro and A. Culotta, “Robust text classification in the presence
of confounding bias,” in Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

